Derive the Vertex Form
Given a polynomial of the form $ax^{2}+bx+c=y$,
we can use some intuition to complete the square. Notice there is a new wrinkle, the $x^{2}$ term has a variable, $a$, in front of it.
-
Factor out $a$ from the $x$ containing terms of the equation. $$a\left(x^{2}+\frac{b}{a}x\right)+c=y$$
-
Now “complete the square” for the term inside the parenthesis.
- Halve the coefficient of the x term,
- and thinking about the squares from the prior section, we can write:
$$a\left[\left(x+\frac{b}{2a}x\right)^{2}-\left(\frac{b}{2a}\right)^{2}\right]+c=y$$
-
Get the negative part of the constant term out of the parenthesis.
$$a\left(x+\frac{b}{2a}\right)^{2}-a\left(\frac{b}{2a}\right)^{2}+c=y$$
-
And, if you think it helps, tidy up the constant term.
$$a\left(x+\frac{b}{2a}\right)^{2}+c-\frac{ab^{2}}{4a^{2}}=y$$
$$y=a\left(x+\frac{b}{2a}\right)^{2}+\frac{4ac}{4a}-\frac{b^{2}}{4a}$$
$$y=a\left(x+\frac{b}{2a}\right)^{2}-\frac{b^{2}-4ac}{4a}$$
-
The vertex form is $y=a\left(x-h\right)^{2}+k$. So if we rearrange to exactly that form:
$$y=a\left(x-\left(-\frac{b}{2a}\right)\right)^{2}+\frac{-\left(b^{2}-4ac\right)}{4a}.$$
Then we see that $h=-\frac{b}{2a}$ and $k=-\frac{b^{2}-4ac}{4a}$.
Example:
Given the parabolic equation $y=3x^{2}-5x-2$, what are the coordinates of the vertex?
Answer:
The easy way would be to just substitute $a$,$b$, and $c$ into the equations we just developed for $h$ and $k$, but we will instead follow the method.
-
Factor out the 3. $3\left(x^{2}-\frac{5}{3}x\right)-2=y$.
-
Complete the square. $$3\left[\left(x-\frac{5}{6}\right)^{2}-\frac{25}{36}\right]-2=y$$
-
Move the negative part outside the parenthesis.
$$3\left(x-\frac{5}{6}\right)^{2}-2-3\left(\frac{25}{36}\right)^{2}=y$$
-
Combine the constants.
$$3\left(x-\frac{5}{6}\right)^{2}-\frac{49}{12}=y$$
-
Identify the vertex.
$$h=\frac{5}{6}\qquad k=-\frac{49}{12}$$